基于瑞利波技术的开拓大巷地质异常超前探测研究

    罗明坤, 贾策, 李胜, 孙浩, 徐令金, 何良, 王琨

    罗明坤,贾策,李胜,等. 基于瑞利波技术的开拓大巷地质异常超前探测研究[J]. 煤矿安全,2023,54(9):240−247. DOI: 10.13347/j.cnki.mkaq.2023.09.033
    引用本文: 罗明坤,贾策,李胜,等. 基于瑞利波技术的开拓大巷地质异常超前探测研究[J]. 煤矿安全,2023,54(9):240−247. DOI: 10.13347/j.cnki.mkaq.2023.09.033
    LUO Mingkun, JIA Ce, LI Sheng, et al. Study on advance detection of geological anomaly in development roadway based on Rayleigh wave technology[J]. Safety in Coal Mines, 2023, 54(9): 240−247. DOI: 10.13347/j.cnki.mkaq.2023.09.033
    Citation: LUO Mingkun, JIA Ce, LI Sheng, et al. Study on advance detection of geological anomaly in development roadway based on Rayleigh wave technology[J]. Safety in Coal Mines, 2023, 54(9): 240−247. DOI: 10.13347/j.cnki.mkaq.2023.09.033

    基于瑞利波技术的开拓大巷地质异常超前探测研究

    详细信息
      作者简介:

      罗明坤(1989—),男,重庆人,高级工程师,博士,主要从事矿山压力与岩层控制、瓦斯治理等方面的工作。E-mail:971081876@qq.com

    • 中图分类号: TD163

    Study on advance detection of geological anomaly in development roadway based on Rayleigh wave technology

    • 摘要:

      巷道掘进穿过陷落柱等构造区时,极易发生煤矿安全事故。采用瑞利波技术,对漳村煤矿480采区开拓大巷8#联巷掘进迎头进行超前探测。首先,基于简谐波波动位移方程、频谱分析技术计算出波的相速度,以相速度为横坐标,相速度对应波的半波长为纵坐标,理论计算得到了频散曲线;基于有限差分(FDM)方法得到了瑞利波在陷落柱与围岩交界处会发生能量聚集,并验证了瑞利波能量衰减较慢,传播速度慢。其次,根据矿井地质资料、巷道掘进的实际生产情况,确定采用整体观察距离为3.5 m的布置方式开展瑞利波地质构造探测。最终,采用频散曲线与煤层深度剖面综合分析方法,得出漳村煤矿开拓大巷8#联巷地质构造有3处异常,分别位于探测点前方20~30 m、35~45 m、55~65 m。研究结果有效指导了开拓大巷8#联巷的安全掘进。

      Abstract:

      Coal mine safety accidents are very likely to occur when the roadway is excavated through tectonic areas such as collapsed pillars. In this paper, Rayleigh wave technology is used to carry out advance detection in heading face of No.8 joint roadway in Zhangcun Coal Mine 480# mining area. Firstly, the phase velocity of the wave is calculated based on the simple harmonic fluctuation displacement equation and spectral analysis technique, and the dispersion curve is obtained by theoretical calculation with the phase velocity as the horizontal coordinate and the half-wavelength of the wave corresponding to the phase velocity as the vertical coordinate. Based on the finite-difference (FDM) method, we obtained that Rayleigh waves would gather energy at the junction of the collapse column and the surrounding rock, and verified that the Rayleigh wave energy decays slowly and propagates slowly. Secondly, according to the mine geological data and the actual production situation of roadway excavation, it is determined that the overall observation distance is 3.5 m to carry out the Rayleigh wave geological structure detection. Finally, using the comprehensive analysis method of the dispersion curve and the coal seam depth profile, it is concluded that there are 3 anomalies in the geological structure of the 8# connecting roadway in Zhangcun Coal Mine, which are located at 20-30 m, 35-45 m, and 55-65 m respectively. The results of this study effectively guide the safe driving of No.8 combined roadway.

    • 图  1   地震波传播速度示意图

      Figure  1.   Schematic diagram of seismic wave propagation velocity

      图  2   瑞利波技术原理示意图

      Figure  2.   Schematic diagram of the principle of Rayleigh wave technology

      图  3   模型示意图

      Figure  3.   Model schematic

      图  4   瑞利波均质介质波场云图

      Figure  4.   Wave field cloud diagrams of Rayleigh wave homogeneous medium

      图  5   瑞利波非均质介质波场云图

      Figure  5.   Cloud diagrams of Rayleigh wave field in heterogeneous media

      图  6   瑞利波探测施工布置图

      Figure  6.   Rayleigh wave detection construction layout

      图  7   第1~第4组试验频散曲线

      Figure  7.   Dispersion curves of group 1-4

      图  8   第1~第4组试验煤层深度剖面展示

      Figure  8.   Experimental coal seam depth profile display of group 1−4

    • [1]

      JIA Ce, LI Sheng, FAN Chaojun, et al. Numerical Simulation of Mechanical Characteristics of Roadway Surrounding Rock under Dynamic and Static Loading[J]. Shock and Vibration, 2021, 2021.

      [2] 王炯,姜健,张正俊,等. 星村矿深部采区地应力分布特征及与地质构造关系研究[J]. 采矿与安全工程学报,2019,36(6):1240−1246.

      WANG Jiong, JIANG Jian, ZHANG Zhengjun, et al. In-situ stress distribution characteristics and its relationship with geological structure in Xingcun mine[J]. Journal of Mining & Safety Engineering, 2019, 36(6): 1240−1246.

      [3] 尹尚先,连会青,刘德民,等. 华北型煤田岩溶陷落柱研究70年:成因·机理·防治[J]. 煤炭科学技术,2019,47(11):1−29.

      YIN Shangxian, LIAN Huiqing, LIU Demin, et al. 70 years of investigation on karst collapse column in North China Coalfield: cause of origin, mechanism and prevention[J]. Coal Science and Technology, 2019, 47(11): 1−29.

      [4] 史苗壮,石永生,赵辉,等. 褶曲构造内陷落柱形成机理及巷道支护技术[J]. 煤炭科学技术,2019,47(7):121−126.

      SHI Miaozhuang, SHI Yongsheng, ZHAO Hui, et al. Formation mechanism of subsidence column in fold structure and roadway support technology[J]. Coal Science and Technology, 2019, 47(7): 121−126.

      [5] 孙小明,赵晶,廉振山. 陷落柱-断层复合构造发育特征及对瓦斯赋存的影响研究[J]. 煤矿安全,2020,51(6):14−18.

      SUN Xiaoming, ZHAO Jing, LIAN Zhenshan. Study on development characteristics of collapse column-fault composite structure and their effects on gas occurrence[J]. Safety in Coal Mines, 2020, 51(6): 14−18.

      [6] 安晋松,孙庆先,邱浩,等. 井下陷落柱综合探测技术试验研究[J]. 煤炭科学技术,2015,43(10):144−147.

      AN Jinsong, SUN Qingxian, QIU Hao, et al. Experimental study on underground collapse column by integrated detection technology[J]. Coal Science and Technology, 2015, 43(10): 144−147.

      [7] 尹尚先,武强,王尚旭. 北方岩溶陷落柱的充水特征及水文地质模型[J]. 岩石力学与工程学报,2005(1):77−82. doi: 10.3321/j.issn:1000-6915.2005.01.013

      YIN Shangxian, WU Qiang, WANG Shangxu. Water-bearing characteristics and hydro-geological models of karstic collapse columns in north China[J]. Chinese Journal of Rock Mechanic and Engineering, 2005(1): 77−82. doi: 10.3321/j.issn:1000-6915.2005.01.013

      [8] 靳德武,刘其声,王琳,等. 煤矿(床)水文地质学的研究现状及展望[J]. 煤田地质与勘探,2009,37(5):28−31. doi: 10.3969/j.issn.1001-1986.2009.05.007

      JIN Dewu, LIU Qisheng, WANG Lin, et al. Development and prospect of coal deposit hydrogeology[J]. Coal Geology & Exploration, 2009, 37(5): 28−31. doi: 10.3969/j.issn.1001-1986.2009.05.007

      [9] 田多,师皓宇,梁兴旺,等. 综放工作面过陷落柱阶段划分及其顶板结构分析[J]. 采矿与安全工程学报,2015,32(1):49−53.

      TIAN Duo, SHI Haoyu, LIANG Xingwang, et al. Stage division and roof structure analysis during fully mechanized caving face passing a collapse column[J]. Journal of Mining & Safety Engineering, 2015, 32(1): 49−53.

      [10] 李振华,李见波,贺志宏. 双柳煤矿陷落柱发育特征及突水危险性分析[J]. 采矿与安全工程学报,2014,31(1):84−89.

      LI Zhenhua, LI Jianbo, HE Zhihong. Analysis on development characteristics of karst collapse column and water inrush risk in Shuangliu coal mine[J]. Journal of Mining & Safety Engineering, 2014, 31(1): 84−89.

      [11] 谢冰,王敏. 马道头矿C3-5#层8105工作面陷落柱探查与治理[J]. 煤炭技术,2022,41(3):148−151.

      XIE Bing, WANG Min. Exploration and treatment of collapse column in 8105 working face of layer No. C3-5 in madaotou mine[J]. Coal Technology, 2022, 41(3): 148−151.

      [12] 原文涛. 瞬变电磁法在采空区及陷落柱探测中的应用[J]. 物探与化探,2012,36(S1):164−167.

      YUAN Wentao. The application of transient electromagnetic method to the detection of goaf and collapse columns[J]. Geophysical and Geochemical Exploration, 2012, 36(S1): 164−167.

      [13] 徐佩芬,李传金,凌甦群,等. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报,2009,52(7):1923−1930. doi: 10.3969/j.issn.0001-5733.2009.07.028

      XU Peifen, LI Chuanjin, LING Suqun, et al. Mapping collapsed columns in coal mines utilizing microtremor survey methods[J]. Chinese Journal of Geophysics, 2009, 52(7): 1923−1930. doi: 10.3969/j.issn.0001-5733.2009.07.028

      [14] 刘志新,刘树才,于景邨. 综合矿井物探技术在探测陷落柱中的应用[J]. 物探与化探,2008(2):212−215.

      LIU Zhixin, LIU Shucai, YU Jingcun. The application of integrated mining geophysical exploration technology to detecting the collapse column[J]. Geophysical and Geochemical Exploration, 2008(2): 212−215.

      [15] 李凯,孙怀凤. 矿井含水构造地井瞬变电磁响应规律分析[J]. 中国矿业大学学报,2018,47(5):1113−1122.

      LI Kai, SUN Huaifeng. Response characteristics analysis of mine water filled structure with ground-tunnel transient electromagnetic method[J]. Journal of China University of Mining & Technology, 2018, 47(5): 1113−1122.

      [16] 李刚,王季,关奇. 槽波探测中谐波噪声的自适应衰减算法研究[J]. 煤炭科学技术,2017,45(3):170−173.

      LI Gang, WANG Ji, GUAN Qi. Study on algorithm of harmonic noise adaptive attenuation in channel waves[J]. Coal Science and Technology, 2017, 45(3): 170−173.

      [17] 李冬,杜文凤,许献磊. 矿井地质雷达超前探测方法及应用研究[J]. 煤炭科学技术,2018,46(7):223−228.

      LI Dong, DU Wenfeng, XU Xianlei. Study on advanced detection method and application of mine geological radar[J]. Coal Science and Technology, 2018, 46(7): 223−228.

      [18] 张军. 矿井孔-巷无线电磁波透视探测方法[J]. 煤炭学报,2020,45(8):2856−2864.

      ZHANG Jun. Research on radio electromagnetic wave perspective detection method through borehole-roadway in mine[J]. Journal of China Coal Society, 2020, 45(8): 2856−2864.

      [19] 董春勇,刘盛东. 矿井直流电法应用于煤矿工作面陷落柱勘探[J]. 西部探矿工程,2008(7):124−126. doi: 10.3969/j.issn.1004-5716.2008.07.048

      DONG Chunyong, LIU Shengdong. DC method applied to coal mine collapse column exploration face[J]. West-China Exploration Engineering, 2008(7): 124−126. doi: 10.3969/j.issn.1004-5716.2008.07.048

      [20] 仇念广. 煤矿掘进巷道地质雷达超前探测数值模拟及应用[J]. 矿业安全与环保,2019,46(5):42−46.

      CHOU Nianguang. Numerical simulation and application of GPR in advance detection of coal tunneling[J]. Mining Safety & Environmental Protection, 2019, 46(5): 42−46.

      [21] 位新建. 瑞利波探测技术在金龙煤矿中的应用[J]. 科学技术创新,2020(24):4−5.

      WEI Xinjian. Application of Rayleigh wave detection technology in Jinlong Coal Mine[J]. Science and Technology Innovation, 2020(24): 4−5.

      [22] 李斌坤. 地质构造超前探测中瑞利波技术应用分析[J]. 能源与节能,2020(4):182−183. doi: 10.3969/j.issn.2095-0802.2020.04.080

      LI Binkun. Application analysis of Rayleigh wave technology in advance detection for geological structure[J]. Energy and Energy Conservation, 2020(4): 182−183. doi: 10.3969/j.issn.2095-0802.2020.04.080

      [23] 谢伏巨. 大安山煤矿掘进巷道地质变化带探测技术研究[J]. 煤矿开采,2013,18(5):24−25. doi: 10.3969/j.issn.1006-6225.2013.05.007

      XIE Fuju. Technology of geological variation zone exploration of driving roadway in Daanshan colliery[J]. Coal Mining Technology, 2013, 18(5): 24−25. doi: 10.3969/j.issn.1006-6225.2013.05.007

      [24] 于明科,刘杰. 瑞利波探测在石炭井三矿的应用[J]. 煤田地质与勘探,1997(5):30−34.

      YU Mingke, LIU Jie. The application of mine reyleigh wave survey in the NO. 3 mine of shitanjing[J]. Coal Geology & Exploration, 1997(5): 30−34.

      [25] 贾文青,刘中华. 瑞利波探测技术在矿山地质构造中的应用研究[J]. 矿业工程,2017,15(2):7−9.

      JIA Wenqing, LIU Zhonghua. Application and study of Rayleigh waves detection technology in geological structure of a mine[J]. Mining Engineering, 2017, 15(2): 7−9.

      [26] 李胜,祁晓鑫,李军文. 瑞利波技术超前探测掘进工作面构造异常[J]. 煤田地质与勘探,2015,43(1):96−99.

      LI Sheng, QI Xiaoxin, LI Junwen. Advanced detection technology of Rayleigh wave for detection of abnormal geological structure in excavation face[J]. Coal Geology & Exploration, 2015, 43(1): 96−99.

      [27] 邓瑞. 横向非均匀介质多模态瑞利面波波场数值模拟研究[D]. 成都: 西南交通大学, 2020.
      [28] 杜文卫,江刚,朱彬占,等. 基于瑞利波法对混凝土表面裂缝检测的数值研究[J]. 土木建筑与环境工程,2018,40(4):151−158.

      DU Wenwei, JIANG Gang, ZHU Binzhan, et al. Numerical simulation on detection of concrete surface crack based on Rayleigh wave method[J]. Journal of Civil, Architectural & Environmental Engineering, 2018, 40(4): 151−158.

      [29] 熊章强,唐圣松,张大洲. 瑞利面波数值模拟中的PML吸收边界条件[J]. 物探与化探,2009,33(4):453−457.

      XIONG Zhangqiang, TANG Shengsong, ZHANG Dazhou. PML absorbing boundary condition for numerical modeling of Rayleigh wave[J]. Geophysical and Geochemical Exploration, 2009, 33(4): 453−457.

      [30] 杨刚. 基于FLAC3D的瑞利波频散特性数值模拟[D]. 哈尔滨: 中国地震局工程力学研究所, 2012.
    图(8)
    计量
    • 文章访问数:  0
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-10-13
    • 网络出版日期:  2023-09-24
    • 刊出日期:  2023-09-24

    目录

      /

      返回文章
      返回
      Baidu
      map